3.113 \(\int \frac{(a+b x)^7}{x^7} \, dx\)

Optimal. Leaf size=85 \[ -\frac{a^7}{6 x^6}-\frac{7 a^6 b}{5 x^5}-\frac{21 a^5 b^2}{4 x^4}-\frac{35 a^4 b^3}{3 x^3}-\frac{35 a^3 b^4}{2 x^2}-\frac{21 a^2 b^5}{x}+7 a b^6 \log (x)+b^7 x \]

[Out]

-a^7/(6*x^6) - (7*a^6*b)/(5*x^5) - (21*a^5*b^2)/(4*x^4) - (35*a^4*b^3)/(3*x^3) -
 (35*a^3*b^4)/(2*x^2) - (21*a^2*b^5)/x + b^7*x + 7*a*b^6*Log[x]

_______________________________________________________________________________________

Rubi [A]  time = 0.0720413, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091 \[ -\frac{a^7}{6 x^6}-\frac{7 a^6 b}{5 x^5}-\frac{21 a^5 b^2}{4 x^4}-\frac{35 a^4 b^3}{3 x^3}-\frac{35 a^3 b^4}{2 x^2}-\frac{21 a^2 b^5}{x}+7 a b^6 \log (x)+b^7 x \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x)^7/x^7,x]

[Out]

-a^7/(6*x^6) - (7*a^6*b)/(5*x^5) - (21*a^5*b^2)/(4*x^4) - (35*a^4*b^3)/(3*x^3) -
 (35*a^3*b^4)/(2*x^2) - (21*a^2*b^5)/x + b^7*x + 7*a*b^6*Log[x]

_______________________________________________________________________________________

Rubi in Sympy [F]  time = 0., size = 0, normalized size = 0. \[ - \frac{a^{7}}{6 x^{6}} - \frac{7 a^{6} b}{5 x^{5}} - \frac{21 a^{5} b^{2}}{4 x^{4}} - \frac{35 a^{4} b^{3}}{3 x^{3}} - \frac{35 a^{3} b^{4}}{2 x^{2}} - \frac{21 a^{2} b^{5}}{x} + 7 a b^{6} \log{\left (x \right )} + \int b^{7}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x+a)**7/x**7,x)

[Out]

-a**7/(6*x**6) - 7*a**6*b/(5*x**5) - 21*a**5*b**2/(4*x**4) - 35*a**4*b**3/(3*x**
3) - 35*a**3*b**4/(2*x**2) - 21*a**2*b**5/x + 7*a*b**6*log(x) + Integral(b**7, x
)

_______________________________________________________________________________________

Mathematica [A]  time = 0.00786646, size = 85, normalized size = 1. \[ -\frac{a^7}{6 x^6}-\frac{7 a^6 b}{5 x^5}-\frac{21 a^5 b^2}{4 x^4}-\frac{35 a^4 b^3}{3 x^3}-\frac{35 a^3 b^4}{2 x^2}-\frac{21 a^2 b^5}{x}+7 a b^6 \log (x)+b^7 x \]

Antiderivative was successfully verified.

[In]  Integrate[(a + b*x)^7/x^7,x]

[Out]

-a^7/(6*x^6) - (7*a^6*b)/(5*x^5) - (21*a^5*b^2)/(4*x^4) - (35*a^4*b^3)/(3*x^3) -
 (35*a^3*b^4)/(2*x^2) - (21*a^2*b^5)/x + b^7*x + 7*a*b^6*Log[x]

_______________________________________________________________________________________

Maple [A]  time = 0.01, size = 76, normalized size = 0.9 \[ -{\frac{{a}^{7}}{6\,{x}^{6}}}-{\frac{7\,{a}^{6}b}{5\,{x}^{5}}}-{\frac{21\,{a}^{5}{b}^{2}}{4\,{x}^{4}}}-{\frac{35\,{a}^{4}{b}^{3}}{3\,{x}^{3}}}-{\frac{35\,{a}^{3}{b}^{4}}{2\,{x}^{2}}}-21\,{\frac{{a}^{2}{b}^{5}}{x}}+{b}^{7}x+7\,a{b}^{6}\ln \left ( x \right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x+a)^7/x^7,x)

[Out]

-1/6*a^7/x^6-7/5*a^6*b/x^5-21/4*a^5*b^2/x^4-35/3*a^4*b^3/x^3-35/2*a^3*b^4/x^2-21
*a^2*b^5/x+b^7*x+7*a*b^6*ln(x)

_______________________________________________________________________________________

Maxima [A]  time = 1.35323, size = 103, normalized size = 1.21 \[ b^{7} x + 7 \, a b^{6} \log \left (x\right ) - \frac{1260 \, a^{2} b^{5} x^{5} + 1050 \, a^{3} b^{4} x^{4} + 700 \, a^{4} b^{3} x^{3} + 315 \, a^{5} b^{2} x^{2} + 84 \, a^{6} b x + 10 \, a^{7}}{60 \, x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^7/x^7,x, algorithm="maxima")

[Out]

b^7*x + 7*a*b^6*log(x) - 1/60*(1260*a^2*b^5*x^5 + 1050*a^3*b^4*x^4 + 700*a^4*b^3
*x^3 + 315*a^5*b^2*x^2 + 84*a^6*b*x + 10*a^7)/x^6

_______________________________________________________________________________________

Fricas [A]  time = 0.197532, size = 109, normalized size = 1.28 \[ \frac{60 \, b^{7} x^{7} + 420 \, a b^{6} x^{6} \log \left (x\right ) - 1260 \, a^{2} b^{5} x^{5} - 1050 \, a^{3} b^{4} x^{4} - 700 \, a^{4} b^{3} x^{3} - 315 \, a^{5} b^{2} x^{2} - 84 \, a^{6} b x - 10 \, a^{7}}{60 \, x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^7/x^7,x, algorithm="fricas")

[Out]

1/60*(60*b^7*x^7 + 420*a*b^6*x^6*log(x) - 1260*a^2*b^5*x^5 - 1050*a^3*b^4*x^4 -
700*a^4*b^3*x^3 - 315*a^5*b^2*x^2 - 84*a^6*b*x - 10*a^7)/x^6

_______________________________________________________________________________________

Sympy [A]  time = 2.32077, size = 80, normalized size = 0.94 \[ 7 a b^{6} \log{\left (x \right )} + b^{7} x - \frac{10 a^{7} + 84 a^{6} b x + 315 a^{5} b^{2} x^{2} + 700 a^{4} b^{3} x^{3} + 1050 a^{3} b^{4} x^{4} + 1260 a^{2} b^{5} x^{5}}{60 x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x+a)**7/x**7,x)

[Out]

7*a*b**6*log(x) + b**7*x - (10*a**7 + 84*a**6*b*x + 315*a**5*b**2*x**2 + 700*a**
4*b**3*x**3 + 1050*a**3*b**4*x**4 + 1260*a**2*b**5*x**5)/(60*x**6)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.218544, size = 104, normalized size = 1.22 \[ b^{7} x + 7 \, a b^{6}{\rm ln}\left ({\left | x \right |}\right ) - \frac{1260 \, a^{2} b^{5} x^{5} + 1050 \, a^{3} b^{4} x^{4} + 700 \, a^{4} b^{3} x^{3} + 315 \, a^{5} b^{2} x^{2} + 84 \, a^{6} b x + 10 \, a^{7}}{60 \, x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^7/x^7,x, algorithm="giac")

[Out]

b^7*x + 7*a*b^6*ln(abs(x)) - 1/60*(1260*a^2*b^5*x^5 + 1050*a^3*b^4*x^4 + 700*a^4
*b^3*x^3 + 315*a^5*b^2*x^2 + 84*a^6*b*x + 10*a^7)/x^6